
Windows NT
BY DOUGLAS A . HAMILTON

Navigate Your Way
with Mapped Files

O
NE OF Windows NT's

interesting features is

mapped files.· Basically,

the idea is that with NT's

large, flat, virtual address

space, there's no reason for

an application to have to

fool around with tedious

1/0 operations to read or write a file.

Instead, you use the virtual memory paging mecha­

nism to map the whole file into the address space of the

application. Accessing individual characters in the file

amounts to dereferencing a pointer. If the address corre­

sponds to a location in the file that has not already been

physically read in from the disk, the virtual memory

system traps the page fault, reading in the desired data.

What's nice about this mechanism is that it makes

it unnecessary for an application to deal with questions

of buffering, how big the buffers should be or data that

happens to fall across buffer boundaries. It's especially

convenient if the data has to be accessed more or less

randomly: Doing that with ordinary 1/0 operations can

WINDOWS M AGAZINE • M ARCH 1993

be a real mess, but it's t rivial with
mapped files.

The other big advantage is that
mapped files are fast. In some simple ex­
periments using the code that I'll show
you here-reading files and counting the
number of words in them-mapped files
were as much as 36% faster than using
the NT kernel's ReadFile primitives.

Let's start with a simple example,
wcl.c, using ordinary ReadFile calls:

#include <windows.h>

#include <stdio.h>

void main(int argc, char .. argv)

· int total = 0, i;

for (i = 1; i< argc; i++)

HANDLE!;

int words = 0;

f = CreateFile(argv[i],

GENERIC_READ,

FILE_SHARE_READ I

Fl LE_SHARE_ WRITE,

NULL, OPEN_EXISTING,

FILE_ATIRIBUTE_NORMAL,

NULL);

if (f != INVALID_HANDLE_VALUE)

{

BOOL mid_ word = FALSE;

DWORD bytes;

char buffer[1 0240], *c;

while (ReadFile(f, buffer,

sizeof(buffer), &bytes,

NULL) && bytes)

for (c = buffer;

c < buffer + bytes;

C++)

switch (*c)

case '\n':

case '':

case '\t' :

317

ros, I've made the whole file visible.
Multiple views can be created by mul­

tiple processes and still all be coherent,
meaning they will always be consistent,
one with another. The underlying mecha­
nism here is that the same physical pages
of memory representing a given portion
of a file get shared between all the

Introducing
Address Express

Now there's a small inkjet
printer just for envelopes, post­
cards, labels and self-mailers.

Address Express connects to
any PC or Mac, is networkable,
prints up to 4 envelopes per
minute, and doesn't interfere
with your main printer.

Windows NT

processes requesting access. The per­
process tables mapping from virtual ad­
dress to physical pages of memory will
actually have the same entries in each
case when two processes are viewing the
same m apping object. If one process
makes a change, it's seen instantly by the .
other process because it is physically the

It comes with DOS, Windows
and Mac software that automati­
cally finds the address in your
letter and prints an envelope
while your main printer handles
your letter. You can add return
addresses, messages, graphics
and logos, even POSTNET bar­
codes for faster mail delivery.

Calll-800-426-7827, (<:e]
~xt. 187.for more STAR
1nformat1on. II"\ ®

Tel: 203-661-9700 Fax: 203-661-1540 © 1993 CoStar Corporation.

Circle Reader Service No. 320
320 WINDOWS M AGAZINE • M ARCH 1993

same memory cell seen by both.
(What you may already have guessed

but which may bear explicit mention is
that mapped files are also the way to do
sh ared memory under Windows NT.
Where other operating systems might
have a special mechanism just for shared
memory, NT gives you a more general
mechanism that also happens to work
nicely in that special case.)

But do be aware that, even though in­
dividual views generated from a single
map are guaranteed to be coherent, no
such guarantee is made about views gen­
erated from different maps of the same
file nor about the contents of a file as
seen through a map versus ordinary I/0.

This example has dealt with just read­
ing a file. It 's also possible to write a file
using a map. To do that, the file must be
opened with GENERIC_READ I GENER­
IC_ WRlTE access, the map created with
PAGE_READWRITE access and the view
opened with FILE_MAP _ WRlTE access. If
it's a new file, its size will be set by the
len gth specified with the Creat e­
FileMapping call, and any characters not
set to some specific value will be zero. If
you 'd like to u~e a map to write a file
whose size won't be known until all the
writing is done, the trick is to start by cre­
ating a map bigger than you think is re­
quired, writing what you need, closing
the map, closing the file and then re­
opening the file with GENERIC_ WRITE
access and setting the file size using
SetFilePointer and SetEndOfFile. (For
some reason, it's not possible to set the
file pointer on a fil e opened for
read/write access.)

Mapped files are not hard to use. And
given the simplification and performance
benefits they offer, they have a big advan­
tage in complex applications. Mapped
files are a sleeper: Because they're new
and are offered only on a very few other
systems, they haven't yet attracted a lot of
attention. But stay tuned: Mapped files
are going to be very important. •

Douglas Hamilton is president of Hamilton
Laboratories (Wayland, Mass.) and author
of the Hamilton C Shell, an advanced inter­
active command processor and tools package
for OS/2 and Windows NT. Reach Douglas
on WIX as hamilton or care of Editor at the
address on page 14.

