SCOTT BALDWIN

Windows NT

By DougrAas A. HAMILTON

Navigate Your Way
with Mapped Files

NE OF Windows NT’s

interesting features is

mapped files. Basically,
the idea is that with NT's
large, flat, virtual address
space, there’s no reason for
an application to have to
fool around with tedious
I/O operations to read or write a file.

Instead, you use the virtual memory paging mecha-

nism to map the whole file into the address space of the
application. Accessing individual characters in the file

amounts to dereferencing a pointer. If the address corre-

sponds to a location in the file that has not already been

physically read in from the disk, the virtual memory

system traps the page fault, reading in the desired data.
What's nice about this mechanism is that it makes

it unnecessary for an application to deal with questions

of buffering, how big the buffers should be or data that

happens to fall across buffer boundaries. It's especially

convenient if the data has to be accessed more or less

randomly: Doing that with ordinary I/O operations can

WINDOWS MAGAZINE ® MARCH 1993

i be a real mess, but it’s trivial with

mapped files.
The other big advantage is that

¢ mapped files are fast. In some simple ex-
i periments using the code that I'll show

you here—reading files and counting the
number of words in them—mapped files
were as much as 36% faster than using
the NT kernel’s ReadFile primitives.

Let’s start with a simple example,
wcl.c, using ordinary ReadFile calls:

#include <windows.h>
#include <stdio.h>
void main(int arge, char **argv)

{

int total = 0, i;

for (i=1;i<argc; i++)

{

HANDLE f;

int words = 0;

f = CreateFile(argv{i],
GENERIC_READ,
FILE_SHARE_READ |

FILE_SHARE_WRITE,
NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);

if (f 1= INVALID_HANDLE_VALUE)

{

BOOL mid_word = FALSE;

DWORD bytes;

char buffer{10240], *c;

while (ReadFile(f, buffer,
sizeof(buffer), &bytes,

NULL) && bytes)
for (c = buffer;

¢ < buffer + bytes;

C++)

switch (*c)

{

case \n”:

case ‘"

case \t:

317

case \r':
if (mid_word)
{
mid_word = FALSE;
words++;
}
break;
default:
mid_word = TRUE;
}
CloseHandle(f);
printf(“%6d %s\n”, words,
argvi));
total += words;
}
}
if (argc > 2)
printf(“%6d Total\n”, total);
fflush(stdout);
ExitProcess(0);

}

For each of the filenames specified on
the command line, this program will |
open the file and then, reading 10KB
chunks of characters at a time, look for
word breaks consisting of white-space i
characters. After a file has been read, the i
total number of words found will be
printed. At the end, if there is more than
one file, a total for all the files will be :

printed. Here’s some sample output:

121 wel.c
146 we2.c
267 Total

(The performance of this routine does
depend somewhat on the size of the
buffer you use. If all the files it’s reading !
are small, it won’t make any difference.
But, for example, if you shrink the buffer
down to only 2KB with a series of files :
averaging around 46KB, runtime will in- :
crease by around 20%. Increasing buffer
size beyond 10KB has diminishing re-
turns, so my comparisons are against

that buffer size.)

Now here’s that same function, recast

as wc2.c using mapped files:

#include <windows.h>

#include <stdio.h>

void main(int argc, char **argv)
{
inttotal =0, i;

for (i=1; i< argc; i++)

318

Windows NT

{

HANDLE f;

int words = 0;

f = CreateFile(argv[i],
GENERIC_READ,
FILE_SHARE_READ |

FILE_SHARE_WRITE,
NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);

if (f I= INVALID_HANDLE_VALUE)
{

HANDLE m;

m = CreateFileMapping(f,
NULL, PAGE_READONLY,
0, 0, NULL);

if (m)

{

char *p;

p = MapViewOfFile(m,
FILE_MAP_READ, 0,
0, 0);

if (p)

{

BOOL mid_word = FALSE;

DWORD bytes;

char *end, *c;

end=p+

GetFileSize(f, NULL);

for (c=p; c <end; c++)
switch (*c)
{
case \n’:
case ‘"
case \t
case \r':
if (mid_word)
{
mid_word = FALSE;
WOrds++;
}
break;
default:
mid_word = TRUE;
}

UnmapViewOfFile(p);

}

CloseHandle(m);

}

CloseHandle(f);

printf(“%6d %s\n”, words,
argv[il);

total += words;

}

}

if (argc > 2)

printf(“%6d Total\n”, total);

WINDOWS MAGAZINE ® MARCH 1993

fflush(stdout);
ExitProcess(0);

}

What you can see immediately is that

there’s a bit of a trade-off. Setting up the
mapping of the file in the application’s
i memory space involves a bit more code,
but the inner-loop word counting is sim-
plified by the absence of any further ex-
plicit I/O operations. Presumably, in
i most real-world situations (in contrast to
this toy application), this trade-off will
heavily favor the use of mapped files.

When I ran this second version, it was

roughly as fast—maybe a couple of per-
centage points slower on small files. But
on large files it was considerably faster.
On nontrivial applications, that advan-
tage for mapped files should increase.

The steps involved in mapping a file

into memory consist of, first, opening it
i in the traditional manner; second, creat-
i ing a mapping object; and, third, creating
a view of that map. By creating a map-
ping object, you're telling the NT kernel’s
virtual memory subsystem that it should
! be prepared to allow the file to be
mapped into an application’s memory
space. Documentation is a bit sketchy,
i but presumably this means setting up
¢ sufficient page-table entries to cover the
file, initializing them so that if any
process tries to access these pages the
data will be faulted in and so on.

In this example, I've specified zeroes

for the high and low 32-bit halves of the
map object size, meaning the size is set at
the current size of the file; but, for exam-
i ple, if I intended to increase the size of
! the file, T could have explicitly set a dif-
ferent size. It's also possible to name the
mapping object so other processes might
i open it by name, though, in this exam-
ple, I just specified NULL—making this a
private mapping object.

Creating a view consists of making the

mapped file visible in a particular applica-
tion’s memory space at a particular virtu-
i al address. (The virtual address at which
it'll show up is chosen by the kernel; if
i you really cared, you could use the
MapViewOfFileEx call instead.) Op-
tionally, one might choose to map only a
portion of a file by specifying the offset at
i which to begin and the number of bytes
i 1o map. In this example, by specifying ze-

ros, I've made the whole file visible.

Multiple views can be created by mul-
tiple processes and still all be coherent, !
meaning they will always be consistent,
one with another. The underlying mecha-
nism here is that the same physical pages
of memory representing a given portion |
of a file get shared between all the

Windows NT

i processes requesting access. The per-

process tables mapping from virtual ad-
dress to physical pages of memory will
actually have the same entries in each
case when two processes are viewing the
same mapping object. If one process
makes a change, it’s seen instantly by the
other process because it is physically the

EASY ENVELOPE
PRINTING.

Introducing
Address Express

Now there’s a small inkjet
printer just for envelopes, post-
cards, labels and self-mailers.

Address Express connects to
any PC or Mac, is networkable,-
prints up to 4 envelopes per
minute, and doesn't interfere
with your main printer.

Tel: 203-661-9700 Fax: 203-661-1540 ©1993 CoStar Corporation.

It comes with DOS, Windows
and Mac software that automati-
cally finds the address in your
letter and prints an envelope
while your main printer handles
your letter. You can add return
addresses, messages, graphics
and logos, even POSTNET bar-
codes for faster mail delivery.

Call }-88;)?-426-7827,
ext. or more STAR®

information.

Circle Reader Service No. 320

320

WINDOWS MAGAZINE ® MARCH 1993

same memory cell seen by both.

(What you may already have guessed
but which may bear explicit mention is
that mapped files are also the way to do
shared memory under Windows NT.
Where other operating systems might
have a special mechanism just for shared
memory, NT gives you a more general
mechanism that also happens to work
nicely in that special case.)

But do be aware that, even though in-
dividual views generated from a single
map are guaranteed to be coherent, no
such guarantee is made about views gen-
erated from different maps of the same
file nor about the contents of a file as
seen through a map versus ordinary I/O.

This example has dealt with just read-
ing a file. It’s also possible to write a file
using a map. To do that, the file must be
opened with GENERIC_READ | GENER-
IC_WRITE access, the map created with
PAGE_READWRITE access and the view
opened with FILE MAP_WRITE access. If
it’s a new file, its size will be set by the
length specified with the Create-
FileMapping call, and any characters not
set to some specific value will be zero. If
you'd like to use a map to write a file
whose size won't be known until all the
writing is done, the trick is to start by cre-
ating a map bigger than you think is re-
quired, writing what you need, closing
the map, closing the file and then re-
opening the file with GENERIC_WRITE
access and setting the file size using
SetFilePointer and SetEndOfFile. (For
some reason, it’s not possible to set the
file pointer on a file opened for
read/write access.)

Mapped files are not hard to use. And
given the simplification and performance
benefits they offer, they have a big advan-
tage in complex applications. Mapped
files are a sleeper: Because they're new
and are offered only on a very few other
systems, they haven't yet attracted a lot of
attention. But stay tuned: Mapped files
are going to be very important.

Douglas Hamilton is president of Hamilton
Laboratories (Wayland, Mass.) and author
of the Hamilton C Shell, an advanced inter-
active command processor and tools package
for OS/2 and Windows NT. Reach Douglas
on WIX as hamilton or care of Editor at the
address on page 14.

