
N
T OFFERS RICH func­

tionality for creating

child processes; they

can run as asynchronous ac­

tivities, be connected to­

gether with pipes and can

react to exception events

such as interrupts. But with

Windows NT
B Y D OUG LAS A. H AMILTON

All My
Children

all this functionality comes the basic problem of trying to

code any of it. In this column, we'll take a look at a

couple of very simple examples of, first, just spawning a

child and, second, setting up a pipe between the two

processes.

Spawn.c

Creating a child process is probably simpler than you

imagine. Here's a simple but complete program,

spawn.c, to run an arbitrary command.

If you type "spawn notepad hello.c," it will start the

notepad, ready to edit hello.c.

Spawn works by retrieving the command-line string,

stripping off the first word (holding "spawn") and

WINDOWS MAGAZINE • D ECEMBER 1992

passing the rest to CreateProcess as the
filename to be executed along with any
arguments.

.......... F.~~~~-~:
#include <Windows.h>
#include <Stdio.h>
void cdecl main(void)

{
char *c = GetCommandline();
while (*c && *c != ' ')

it(*c++)
{
PROCESS_INFORMATION child;
static STARTUPINFO startup;
startup.cb = sizeof(startup);
CreateProcess(NULL, c, NULL,

NULL,
TRUE /* Inherit handles */,
0 , NULL, NULL, &startup,
&child);

WaitForSingleObject(child.hProcess,
INFINITE);

else
printf("usage: spawn command\n");

ExitProcess(O);
}

I've used the GetCommandLine call
rather than the more traditional main
function parameter argv, for two reasons.
GetCommandLine is the underlying oper­
ating system call that the C start-up rou­
tines use to construct argc and argv. So
this is a little faster just for that reason
alone. But also, it was just a little more
convenient in this situation, particularly
since it had all the words already concate­
nated with spaces between them. (Why
break it up into separate words just to
paste them back together?)

Notice that there's no explicit provi­
sion here for tediously searching through
the PATH directories nor is any considera­
tion given to what kind of command is

357

being started. That's deliberate.
CreateProcess is smart enough to know
all about the search path and do the right
thing no matter whether the child is a
Win32, Win 3.x, DOS, POSIX or OS/2 ap­
plication. If you don't specify an exten­
sion, it knows to try .EXE automatically.
It even knows how to run .CMD files by
starting up a copy of CMD.EXE. (But you
do have to give the .CMD extension ex­
plicitly if that's what you mean.)

The first parameter to CreateProcess
is used to specify the full pathname for
the executable file. That can be useful if
you don't want CreateProcess to auto­
matically search the PATH directories. If
you do know the full pathname, it is
faster than letting CreateProcess exhaus­
tively try every possibility.

The third and fourth parameters to
CreateProcess let you attach security de­
scriptors to the child process and its first
thread. That's clearly an advanced topic
and not something most of us need to
worry about.

The fifth parameter specifies whether
open inheritable handles like file han­
dles, semaphores or other processes are to
be inherited. Most child processes will
need to inherit at least stdin; therefore,
this parameter should be set to TRUE.

The sixth parameter determines
whether the child is to be suspended, run
under the control of a debugger or run with
a different priority. The seventh can specify
a unique. set of environment variables. The
eighth parameter sets the current directory
for the start-up of the child process.

The STARTUPINFO structure passed as
the ninth parameter lets you customize
the size, shape or position of the window
in which the child will run. Most of the
time, CreateProcess will produce an ac­
ceptable window without the need to ad­
just all the fields in this structure. Only
the size field need be specified.

Finally, the PROCESS_INFORMATION
structure returns handles and ID numbers
for the child process and its first thread.
The process handle is especially important;
we can wait on it indefinitely to find out
when the child completes.

Pipe.c
Here's a more complex case, creating a

pipe to our child's stdout. We'll read
everything it writes into the pipe, copy-

358

Windows NT

ing it to our own stdout and then print
the number of characters read.

In this example, we open a pipe, ere-

.......... ~~~.~.~ .. ~:
#include <windows.h>

#include <stdio.h>

void cdecl main(void)

{

char *c = GetCommandline();
while (*c && *c != ' ')

C++;

il(*c++)

{

char bufferf4096];

DWORD length, total = 0;

HANDLE thisProcess =

GetCurrentProcess(),

pipeout, pipein, childout, Stdout;
PROCESS_INFORMATION child;

static STARTUPINFO startup;
startup.cb = sizeof(startup);

CreatePipe(&pipeout, &pipein, NULL, O);

DuplicateHandle(thisProcess, pipein,

thisProcess, &childout,
NULL, TRUE /* Inheritable*/,
DUPLICATE_CLOSE_SOURCE I

DUPLICATE_SAME_ACCESS);

Stdout = GetStdHandle(
STD _OUTPUT _HANDLE);

SetStdHandle(
STD _ OUTUT _HANDLE,childout);

CreateProcess(NULL, c, NULL, NULL,
TRUE I* Inherit handles*/,

0, NULL, NULL, &startup, &child);
CloseHandle(childout);

while (ReadFile(pipeout, buffer,
sizeof(buffer), &length, NULL))

total += length;

WriteFile(Stdout, buffer, length,

&length, NULL);

CloseHandle(pipeout);
printf('1otal read = %d bytes\n", total);

WaitForSingleObject(child.hProcess,
INFINITE);

else
printl("usage: pipe command\n");

ExitProcess(O);

}

ate an inheritable copy of the input han­
dle and pass it to the child.

CreatePipe is extremely simple: You
pass it pointers to where it should store

WINDOWS MAGAZINE • D ECEMBER 1992

the read and write handles of the pipe
along with an optional security descrip­
tor and an optional advisory buffer size.

The handles that come back are not
inheritable, however. So if we expect our
child to be able to write anything into
the pipe, we first have to create a dupli­
cate handle that is inheritable. (Those
who have worked with OS/2 will notice
the difference here; under OS/2 the inher­
itance of a given handle could change on
the fly. Not so under NT; it's set when the
handle is created.)

DuplicateHandle is a general-purpose
handle duplicator. It will duplicate any
type of handle and can even duplicate
handles between any two processes.

In this simple case, we're just dupli­
cating the handle within our own
process, closing the original and making
the copy inheritable.

The next step is to save off the initial
value of stdout and set stdout to be that
input end of the pipe.

After creating the child process, we
close our own handle to that input end.
This is important because end-of-file on a
pipe isn't detected until the last handle
to the input end is closed.

The remaining step is to loop and
read whatever output the child has pro­
duced and copy it to stdout. But one in­
teresting point to notice is that even
though we had used SetStdHandle to re­
set stdout before creating the child, that
did not affect the handle we'd previously
retrieved. Even printf works, because as
soon as you link in printf, you also get
som e C runtime library initialization
routines that get called when your pro­
gram starts. They do the same thing we
just did: They retrieve the initial setting
for stdout and save it for future use . .

Try typing in these examples and
compiling them. For me, it's one thing to
be told something works and another to
find out for myself. I tested these exam­
ples on the July SDK; they should still
work on the upcoming beta. •

·Douglas Hamilton is president of Hamilton
Laboratories (Wayland, Mass.) and author
of the Hamilton C Shell, an advanced inter­
active command processor and tools package
for OS/2 and Windows NT. Reach Douglas
on WlX as hamilton or care of Editor at the
address on page 12.

