


Traditionally, environment variables 
have been used only to pass an environ
ment to a child process, but under NT 
they even affect simple file system calls 
like OpenFile. If you try opening 
c:hello.c, what you get depends upon the 
current setting of the =C: environment 
variable, violating the principle that the 
result of calling a function should depend 
only upon parameters that are explicitly 
passed, rather than on a lot of miscella
neous global variables. 

Another problem with environmental 
variables is that the designers intended 
that the environment block should be 
opaque, meaning you're not supposed to 
know (or ask) how it's laid out. To get or 
set an environmental variable, an appli
cation is supposed to use only the ap
proved GetEnvironmentVariable and 
SetEnvironmentVariable calls. 

I'm guessing here, but I suspect this is 
so the actual environment can be (in 
some future release) kept in Unicode but 
translated on the fly into standard ASCII 
for older applications. The problem is 
that get and set is not enough. Suppose 
you'd simply like to get the complete list 
of all the variables. You're going to have 
to go look inside the environment block 
yourself because there's no way to ask the 
system simply to give you a list. 

I was also struck by the decision to 
make environment variables case-insen
sitive . Under DOS and OS/2, COM
MAND.COM and CMD.EXE routinely 
translated everything to uppercase, but 
that was a limitation of only those com
mand processors, not of the underlying 
system; the getenv and putenv library 
functions certainly supported case-sen
sitive names. Experience has already 
shown that case-sensitive filenames are 
important to some markets. That's why 
NT offers options to support them. So 
it's not clear why NT architects chose to 
break with the past and make the envi
ronment case-insensitive. 

Also, one particular environmental 
variable, the PATH variable, has a 
strange restriction: It's not possible for 
users to customize their accounts to put 
something ahead of the system defaults. 
I'm told this is for security purposes so 
the system can't be fooled about where 
to find some of its critical components 
when a user logs on. However, that 

Windows NT 

sounds like an excuse, not a reason. 
Signal handling on NT is currently 

pretty weak. It's not anywhere near the 
richness found on UNIX, where one 
might send different kinds of signals to 
indicate different kinds of exceptional 
events. Worse, in the July build, if you hit 
Ctrl+C, an interrupt is sent to every 
process running in the current window. 
There's no way to say, when you create a 
process, that it should be considered a 
background activity and not be interrupt
ed. Arguably, OS/2 is even uglier archi
tecturally, but in practice is not as much 
of a problem. 

Interrupt Handlers 
Under OS/2, interrupt handlers go 

onto a stack and interrupts are delivered 
to the last process to have pushed its han
dler onto';the stack. It's the responsibility 
of the paren1 to take the interrupt and kill 
off any children. If you make the mistake 
of trying to run something that has an in
terrupt handler in the background, the re
sult is weird, but since the kinds of simple 
things one might run in the background 
don't usually have interrupt handlers, it 
generally works. 

Fortunately, by the time you read this, 
the next build of NT should be out, 
bringing a welcome improvement. The 
fix is in several parts: CreateProcess is be
ing enhanced to allow children to be cre
ated that will be sheltered from Ctrl+C. 
The child can also be made the root of a 
new list of processes. To interrupt the 
child and any descendants, Generate
ConsoleCtrlEvent is called, giving it a 
handle to the child. 

Process creation is both better and 
worse than under OS/2. It's better be
cause there's no need to know just what 
kind of application you're starting. Under 
OS/2, every different kind of applica
tion- full screen, text windowed, PM or 
DOS-must be started differently. Under 
NT, you can start anything just by calling 
CreateProcess and passing it the exe
cutable filename. But it's worse if you do 
care what's going to happen. There's no 
way to know immediately before or im
mediately after calling CreateProcess 
whether the child will run in the same or 
separate window, short of looking at the 
.EXE file yourself. Admittedly, the file for
mats aren't that complex to decipher, but 

WINDOWS MAGAZINE • N OVEMBER 1992 

NT really does need something corre
sponding to OS/2's DosQAppType. 

Another problem that would be simple 
to fix is the way abnormal terminations are 
handled. If a process crashes, it just goes 
away. I suppose there may be vendors who 
prefer that-this way, if their apps crash 
their customers are left in the dark without 
any clearly incriminating evidence. 

I think most vendors want to know if 
their products fail, hoping you'll report it 
along with enough data to fix it. NT 
should put up a pop-up with a register 
dump and the exception code when an 
application fails. Even better would be an 
option for snapshotting the process state 
to disk so the vendor could look at it 
with a post-mortem debugger. 

Of course, first we need a decent de
bugger. NTSD, the command-line orient
ed debugger, is a little like a time warp 
back to an era of front panel lights and 
switches. It doesn't understand local vari
ables at all, and on a MIPS machine 
doesn't even understand source code. 
Another problem is that if you're debug
ging a console app, it really should create 
a new console to run it. Instead, it runs 
in the same window. 

Windbg, the Quick C derivative, is cer
tainly prettier, but not a lot better. Maybe 
it's just me, but I have trouble doing even 
simple things like examining the call stack 
with Windbg. As bad as it is, I use NTSD. 
NT really needs Code View. 

Finally, the documented Win32 API is 
not actually the native API of the system. 
Win32 is actually built on top of the un
derlying NT API. Although I've already 
identified this as a strength, it's not free. 
There are a number of straightforward 
functions missing, even though they 
must be possible. For example, there's no 
way to timestamp a directory or format a 
diskette using only the Win32 API. 

All the NT problems I've listed here 
are minor and fixable. I still believe de
velopers who port their product to NT 
are making the right choice. • 

Douglas Hamilton is president of Hamilton 
Laboratories (Wayland, Mass.) and author 
of the Hamilton C Shell, an advanced inter
active command processor and tools package 
for OS/2 and Windows NT. Reach Douglas 
on WIX as hamilton or care of Editor at the 
address on page 10. 

295 


