
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 7: Thread implementation

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Project 2
Make sure to start right away on project 2

Differences compared to project 1:
Much harder!
15% of grade
Test cases will be graded
Hand grading to check for good coding practices,
efficiency, no duplication of code, etc.

2

Monitors vs. Semaphores
Monitors:

+ Custom user-defined conditions
Stateless, signals only wake up threads that are waiting

- Developer must use a cv in combination with a lock
- Must always check the condition on wakeup

Semaphores:
+ Access to the value is thread-safe

State maintained as a positive integer value
- Only condition is “(value == 0)”
- Must map the user-defined condition to 0 or more than 0

How to implement custom waiting condition with semaphores?
3

4

void wait(mutex *m)
{
// create a new semaphore
semaphore s = 0;

// add new semaphore to
// waiting list
waiters.insert(&s);

m->up();
// go to sleep
s.down();
m->down();
}

Implementing condition variables with semaphores

void signal()
{
// nothing to do if no waiters
if (waiters.empty())

return;

// wake up one of the waiters
semaphore s = waiters.front();
s.up();

// remove waiter from queue
waiters.pop();
}

queue waiters = {}; // list of semaphores inserted by waiting threads

Not
atomic

Exercise to try …

Given implementations of mutex and condition variable,
how to implement a semaphore?

5

Interactions between threads
Threads must synchronize access to shared data
High-level synchronization primitives:

Locks
Condition variables
Monitors
Semaphores

Threads share the same CPU

6

7

States of a Thread

New Running

Blocked

Terminated

Create
thread

Thread
completes
execution

Wait on lock,
wait, or down

Another thread
calls unlock,
signal, or up

What if there are more threads than CPUs?

8

States of a Thread

New Ready

Running

Terminated

Create
thread

Thread
completes
execution

Wait on
lock, wait,
or down

Another thread
calls unlock,
signal, or up

Blocked

CPU
available

Switch
CPU to
another
thread

Why no transition from Ready to Blocked?

Ready threads
What to do with thread while it’s not running?

Essentially, a “paused” execution
Must save its private state somewhere

Thread control block (TCB)
Per-thread OS data structure for thread info
Store thread “context” when not running

What context should be stored in TCB?

9

10

Process Address Space

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Data

Segment

Thread context
To save space in TCB

Share code among all threads and store only PC
Use multiple stacks and copy only SP
Also need to store general-purpose registers

Keep track of ready threads (e.g., queue of TCBs)

Now, any thread can be
Running on the CPU
Ready with TCB on ready queue
Blocked with TCB in waiting queue of lock, CV, etc.

11

Two Perspectives to Execution

Thread view:
Running  (Paused)  Resume

CPU view:
Thread 1  Thread 2  Thread 1

12

Context switch

1. Current thread returns control to OS
2. OS chooses new thread to run
3. OS saves current thread state: CPU to TCB
4. OS loads context of next thread: TCB to CPU
5. OS runs next thread

13

How does thread return control back to OS?

Returning control to OS
Three types of internal events:

Thread calls wait(), lock(), etc.
Thread requests OS to do some work (e.g., I/O).
Thread voluntarily gives up CPU with yield() or exit().

Are these enough?

Also need external events:
Interrupts (e.g., timer, I/O, hardware exceptions like null pointer
deref).
Hardware prioritizes interrupts and transfers control to an OS by
picking up a pointer to an interrupt handler function from an
interrupt vector table.

14

Interrupts
Hardware events (implemented by CPU).
Stop current execution (e.g., thread function).
Start running OS interrupt handler.
In P2, only timer and inter-processor interrupts (IPI), but
they may happen while in either user or OS code.

OS registers handlers in interrupt vector table.
Example: timer interrupt

OS may set timer to go off every 10 ms.
Guarantees that it will get control back in <= 10 ms.

15

Context switch

1. Current thread returns control to OS
2. OS chooses new thread to run
3. OS saves current thread state: CPU to TCB
4. OS loads context of next thread: TCB to CPU
5. OS runs next thread

16

Choosing next thread to run
1 ready thread: just run it.

What if only thread that exists calls yield?
>1 ready thread: need to make a decision.

CPU’s scheduling policy.
Lots of options: FIFO, SJF, priority, round robin, etc.

What should CPU do if no ready threads?
Modern CPUs suspend their execution and resume
on an interrupt.
interrupt_enable_suspend() in Project 2.

17

Context switch

1. Current thread returns control to OS
2. OS chooses new thread to run
3. OS saves current thread state: CPU to TCB
4. OS loads context of next thread: TCB to CPU
5. OS runs next thread

18

Saving state of current thread
Save registers, PC, stack pointer
Tricky to get right!

Why won’t the following code work?
100 save PC
101 switch to next thread

Involves tricky assembly-language code
In Project 2, we’ll use Linux’s swapcontext()

19

Context switch

1. Current thread returns control to OS
2. OS chooses new thread to run
3. OS saves current thread state: CPU to TCB
4. OS loads context of next thread: TCB to CPU
5. OS runs next thread

20

Load context and run
How to load registers?

How to load stack?

How to resume execution?

Who is carrying out these steps?

How does thread that gave up control run again?

21

Example of thread switching
Thread 1

print “start thread 1”
yield()
print “end thread 1”

Thread 2
print “start thread 2”
yield()
print “end thread 2”

yield()

print “start yield: thread %d”
switch to next thread (swapcontext)
print “end yield: thread %d”

22

Thread 1 output
start thread 1
start yield: thread 1

end yield: thread 1
end thread 1

Thread 2 output

start thread 2
start yield: thread 2

end yield: thread 2
end thread 2

Creating a new thread
Create a running thread? Seems challenging.

Instead, create a paused thread.
Key idea: pretend it was running, put it on the ready
queue, then just wait for it to be scheduled!

Implication:
Construct TCB as if it were paused at thread start.

23

Recipe for creating a thread

1. Allocate and initialize TCB.
Set PC to start of thread function.
Set general-purpose registers to func parameters.

2. Allocate and initialize stack.
What goes on stack?
Set TCB stack pointer to stack top.
getcontext() and makecontext() in Project 2.

3. Add TCB to ready queue.

We’ve talked here about creating threads.
Coming up later: creating a new process with fork().

24

How to use new thread
Creating a thread is like an asynchronous procedure call

25

parent
call return

parent
create

child works

parent works

Synchronizing with child

What if parent wants to work for a while, then wait for child
to finish?

26

parent
create

child works

parent works parent continues

Synchronizing with child
parent()

create child thread
print "parent works"
…
// Print this after the
// child is done.
print "parent continues"
…

child()
…
print "child is done"

27

Desired output
parent works
child is done
parent continues

OR

child is done
parent works
parent continues

Can we guarantee the desired output with this code?

Synchronizing with child
create child thread

print "parent works"
…
// Give up the processor so
// the child will run.
yield()
print "parent continues"
…

child()
…
print "child is done"

28

Does this work?

Desired output
parent works
child is done
parent continues

OR

child is done
parent works
parent continues

Synchronizing with child
create child thread

print "parent works"
…
// Use a join().
childThread.join()
print "parent continues"
…

child()
…
print "child is done"

29

How to make do
without join?

Desired output
parent works
child is done
parent continues

OR

child is done
parent works
parent continues

Synchronizing with monitors
parent()

childDone = 0
create child thread
print "parent works"
lock()
while (!childDone)

wait()
unlock()
print "parent continues"

child()
print "child is done"
lock()
childDone = 1
signal()
unlock()

30

Desired output
parent works
child is done
parent continues

OR

child is done
parent works
parent continues

Project 2 update
You can now do a substantial part of project 2

Thread create
Context switch
Thread join

Next topic: Implementing synchronization
Need to protect OS data structures (ready queue)
Need to block without (much) busy waiting

31

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 7: Thread implementation
	Project 2
	Monitors vs. Semaphores
	Implementing condition variables with semaphores
	Exercise to try …
	Interactions between threads
	States of a Thread
	States of a Thread
	Ready threads
	Process Address Space
	Thread context
	Two Perspectives to Execution
	Context switch
	Returning control to OS
	Interrupts
	Context switch
	Choosing next thread to run
	Context switch
	Saving state of current thread
	Context switch
	Load context and run
	Example of thread switching
	Creating a new thread
	Recipe for creating a thread
	How to use new thread
	Synchronizing with child
	Synchronizing with child
	Synchronizing with child
	Synchronizing with child
	Synchronizing with monitors
	Project 2 update

