a2 United States Patent

Giambalvo et al.

US008245218B2

US 8,245,218 B2
*Aug. 14, 2012

(10) Patent No.:
(45) Date of Patent:

(54) APPLICATION PROGRAMMING INTERFACE
FOR ADMINISTERING THE DISTRIBUTION
OF SOFTWARE UPDATES IN AN UPDATE
DISTRIBUTION SYSTEM

(75) Inventors: Daniel Giambalvo, Seattle, WA (US);
Jay Thaler, Redmond, WA (US);
Kenneth Showman, Redmond, WA
(US); David B Dehghan, Seattle, WA
(US); Thomas A Sponheim, Seattle, WA
(US); Renan Jeffereis, Redmond, WA
(US); Kristopher J Owens, Seattle, WA
(US); Carey Tanner, Gold Bar, WA
(US); Quan Wang, Kenmore, WA (US);
Nicole A Hamilton, Redmond, WA
(US); Dennis Craig Marl, Seattle, WA
(US); Nirmal Rajesh Soy, Kirkland, WA
(US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1731 days.

This patent is subject to a terminal dis-
claimer.
(21) Appl. No.: 10/537,720

(22) PCT Filed: Mar. 11, 2005

(86) PCT No.: PCT/US2005/008111
§371 (D),
(2), (4) Date: Jun. 7, 2005

(87) PCT Pub. No.: 'WO02005/089209

PCT Pub. Date: Sep. 29, 2005

Related U.S. Application Data
(60) Provisional application No. 60/553,042, filed on Mar.

12, 2004.
(51) Imt.CL

GOG6F 9/44 (2006.01)
(52) US.CL ... 717/172; 717/168; 717/171
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,282,712 Bl 82001 Davis et al.

6,678,888 Bl 1/2004 Sakanishi et al.

6,981,061 B1* 12/2005 Sakakura 709/248
7,519.964 B1* 4/2009 Islametal. 117177
7,617,289 B2* 11/2009 Srinivasan et al. 709/209

7,853,609 B2* 12/2010 Dehghanetal. 707/778
2002/0174034 Al* 11/2002 Auetal. ... 705/27
2003/0061323 Al 3/2003 East et al.

2003/0200300 Al* 10/2003 Melchione 709/223
2004/0019889 Al* 1/2004 Melchione et al. . . 117177
2004/0255291 Al* 12/2004 Siereretal. 717174
2005/0144616 Al* 6/2005 Hammondetal. ... 717173

* cited by examiner

Primary Examiner — Insun Kang
(74) Attorney, Agent, or Firm —Zete Law, PL.L.C,;
MacLane C. Key

(57) ABSTRACT

An application programming interface (API) for administer-
ing the distribution of software updates on an update service
node is presented. The API provides a plurality of interface
calls through which an administrator can establish rules by
which software updates available to the update service node
are distributed.

(65) Prior Publication Data
US 2007/0143390 Al Jun. 21, 2007 20 Claims, 11 Drawing Sheets
x =
ra
‘ UPDATE WEBSERVICE]
= = 5
R B E O R
9 212
S 5 =
AUTHENTICATION/ ADMINISTRATION
AUTHORIZATION ADMINISTRATION APT USER INTERFACE
MODULE (OPTIONAL)
21 25
e
SOFTWARE FROVIDER ———— N———————1
Prcich UPDATE INFORMATION

US 8,245,218 B2

Sheet 1 of 11

Aug. 14, 2012

U.S. Patent

100

SOFTWARE
PROVIDER

Roor
UPDATE
SERVICE NODE

/112
r)

[
|
_
I
i
|
I
i
_
_
_
I
'
I
i
'
1
1
_
I

>

R R ——

124
/__——_<:>-.__——_/

UPDATE
SERVICE
INODE

I 1
4
I
!
|
I
|
|
I
!
I
|
I
I
I
!

£l
\
=

P - ——————

|

|

|

! [I

NS I
QxS

| 55 |l m

“ / |

| |

m % “

! S “

", S i

!

N - ——
e e — ———— — e e ——— — — —

T o e = e - e — — " —— o . o = o -

1.

ig.

US 8,245,218 B2

Sheet 2 of 11

Aug. 14,2012

U.S. Patent

Y% |
INZINOD
NOLLVMOANI ZLVadn 2IVadn
91T vl
11T
EOVAUTLINT UAST] IdV NOLLVIISINDNGY | NowvzrioHInv
INI /NOLLVDLINTHLOV
wm% Zie emv
i
AINAOH
ATAAON ONLLIOITY TTAON ALVAd ATIHD _ ALV dn ANTT
80T 20T wm%
ADIAYAS GTM ALV AN

SA
N

f

US 8,245,218 B2

Sheet 3 of 11

Aug. 14, 2012

€S
INZINOD
NOLLVINOANI ALV Ad ALY
TIVITEINT
ATAAOUd TIVMLIOS
08
iz
CIYNOILdO) TINAOW
TOVIUAINT JAS(1V NOLLVEISINDVQV NOLLVZINOHINV
NOLLVLLSINDAQY /NOLLVOLINAHLIV
= -
zic oIz
(IYNOILLdO) (IVNOLLdO)
TTAAON ONLLIOITH AT1AON ZLVAdll TTHD ATNAON ALV AL INATTD
ANAVAS TAM ALV A

U.S. Patent

US 8,245,218 B2

Sheet 4 of 11

Aug. 14, 2012

U.S. Patent

Vi S

TTIVIIVAV SALVAd(1 ON) AVIAd

Y

(44

NOILVZINOYHONAS ALVAdA LSANOTY

A.b

14

DO0TVIVINWOIA S1ON1J0Yd JIOTTAS

5

DOTVIVD ALVAd IDNAOYd LSANOTH

A\V

Iy

SSHIDV ALVAd AZTIOHINV/ALVILINAHLNV

n.b

80y

d1HD ¥0A ALVAd] HZIMOHLOV

ﬂb

9k

ISTT HIVAd NINLTY

Ab

ar

SALVA] ATV VAV LSHLVT ANIWYHALAd

ﬂb

ocr

DOTVIVD ZLVAd LONA0Yd NUNLAT J

Auu

vy

NAINCL NOLLVDIINAHLAY NINLTY ﬁ

HAON HIIAYAS HLVAd] TITHD

HIVAd(l HIVMIAOS AATADTH 4

4.u

ror

ooy

HAON ZIIAYAS HLV A INTIVd J

US 8,245,218 B2

Sheet 5 of 11

Aug. 14, 2012

U.S. Patent

JAOdITY ILVAdI LINENS

qu

434

gt 51

(IVNOILIQ) QVOTAVd ALV LSAA0TH

ﬂb

144

VIVAVIAWALVAdN ,amajl,rv

AQYOTIVd ALVAd NIALTY

dlu

0¥

RN

Auu

(44

VIVAVIANW ALVAd1 NILLAY

dp

¥

LISTAIVAdO NIALAY

n\p

444

NOILLVZINOYHONAS ALVAd LSTNO0OTH

qu

8Ey

DOTVIVI NOIA SIONA0Yd IOTTAS

nnu

9¢¥

SALVAd TTIVIIVAY LSALVTANIWNYALAd

Ab

/44

DOTVIVD LVAdA I2NA0Yd ISTNOTH

Ab

494

DOTVIVI HLVAd LOQdOYd NI LT

454

SSHODV ALVAd] AZTNOHLAV/ALVIOLINAH LAY

Alu

8cr

NDIGI NOILVIIINAHINY NIALTY

osry

U.S. Patent

Aug. 14, 2012 Sheet 6 of 11

START

o

OBTAIN SYNCHRONIZED
UPDATE LIST FROM PARENT

(FIG. 6)

US 8,245,218 B2

500

ANY UPDATES
AVAILABLE
2

506
OBTAIN AVAILABLE UPDATE(S)
FROM PARENT
(FIG. 7)

NO

=

REPORT UPDATE
ACTIVITIES TO PARENT

— - —t— am- —

|

DELAY

Fig. 5.

U.S. Patent Aug. 14, 2012 Sheet 7 of 11 US 8,245,218 B2

START

600

602
AUTHENTICATE AND AUTHORIZE
WITH PARENT
64
Y
ESTABLISH COMMUNICATION
PARAMETERS WITH PARENT
[3
OBTAIN PRODUCT UPDATE
CATALOG FROM PARENT

[3

SELECT SOFTWARE PRODUCTS

l E}

SUBMIT SYNCHRONIZATION REQUEST

l 3
OBTAIN UPDATE LIST IDENTIFYING
AVAILABLE UPDATES FROM PARENT

(22

Fig.6.

U.S. Patent Aug. 14, 2012 Sheet 8 of 11 US 8,245,218 B2

700

i

702

-

SELECT FIRST UPDATE IDENTIFIER
IN UPDATE LIST

y 8

OBTAIN UPDATE METADATA
—» CORRESPONDING TOSELECTED }-~—x

UPDATE IDENTIFIER :

|
706 OPTIONAL
P2

1
i
|
|
]
}
!
{

OBTAIN UPDATE PAYLOAD
CORRESPONDING TOSELECTED
UPDATE IDENTIFIER

SELFECT NEXT UPDATE IDENTIFIER
IN UPDATE LIST

Fig.7.

U.S. Patent Aug. 14, 2012 Sheet 9 of 11 US 8,245,218 B2

START
8§00
K
RECEIVE UPDATE
SYNCHRONIZATION REQUEST
FROM CHILD

v 8

SELECT FIRST PRODUCT
IDENTIFIED IN REQUEST

808

(_)

WRITE UPDATE IDENTIFIER OF
"AVAILABLE" UPDATES FOR
PRODUCT INTO UPDATE LIST
b
ANYMORE
PRCDUCTS IN D o] RETUR% UPDATE LIST
REQUEST CHILD
?
YES 814

SELECT NEXT PRODUCT
INREQUEST

Fig.8.

US 8,245,218 B2

Sheet 10 of 11

Aug. 14, 2012

U.S. Patent

ADMINISTRATION API

|

\ (93‘
_
GROUPS

SUBSCRIPTIONS

:
|

UPDATES

UPDATE PROCESS

Y

4

o

e e e e e ——— e

TR ST M mm e e e s e A e e e o - - v — —— o

U.S. Patent Aug. 14,2012 Sheet 11 of 11 US 8,245,218 B2

1002

Q IUPDATESEVER)

1004
CONFIGURATION)

INFORMATION
E1%06

SUBSCRIPTION

INFORMATION
(11)%)8
APPROVAL)

INFORMATION

1010

UPDATE SERVICE)
NODE STATUS

US 8,245,218 B2

1
APPLICATION PROGRAMMING INTERFACE
FOR ADMINISTERING THE DISTRIBUTION
OF SOFTWARE UPDATES IN AN UPDATE
DISTRIBUTION SYSTEM

FIELD OF THE INVENTION

The present invention relates to software and computer
networks, and, in particular, the present invention relates to an
application programming interface for administering the dis-
tributing of software updates in an update distribution system.

BACKGROUND OF THE INVENTION

Nearly all commercially available software products
undergo a continual revision process to repair or update fea-
tures of the software. Each revision of a software product
frequently requires adding new files, replacing existing files
with newer revisions, deleting obsolete files, or various com-
binations of these actions. This process of replacing older
files, adding new files, and deleting obsolete files of a soft-
ware product will be referred to hereafter as “updating the
product,” and the data collection, including binary files, data
files, update instructions, metadata, database data, system
registry settings, security settings, and the like, used in updat-
ing the product will be referred to hereafter more simply as an
“update.”

Once a software provider has created an update for a soft-
ware product, either to fix a problem, enhance security, or add
new features, the software provider will want to make that
update widely available to its customer base. Quite often,
such as when the update is directed at correcting a flaw in the
product or addressing a critical security issue, the software
provider will want that update installed on the customers’
computers as soon as possible. Indeed, most software provid-
ers have a business incentive to distribute software updates to
their customers as quickly and as trouble-free as possible.

The computer industry has experienced an explosive
growth in the number of computers connected to networks,
and in particular, to the Internet. Due to this explosive growth,
and due to the communication abilities available through a
connection to the Internet, the Internet has become an impor-
tant and integral channel for software providers to distribute
updates to their customers. In fact, the Internet has become
the primary distribution channel for many software providers
to provide software updates to their customers. It is often in
the best interest of software providers to distribute software
updates over the Internet, as electronic update distribution
over the Internet reduces their overall costs and enables cus-
tomers to obtain the software updates as soon as they are
available. More and more frequently, these software updates
are conducted automatically over the Internet, without any
user intervention.

While the Internet is now commonly used as a conduit for
distributing software updates from software providers, sev-
eral issues frequently arise. Two such issues include (1) effi-
ciency relating to the update distribution infrastructure/re-
sources, and (2) administrative control over the distribution
and installation of software updates.

In regard to efficiency of the distribution resources, net-
works, including the Internet, possess only a finite amount of
communication resources, often referred to as bandwidth. A
finite amount of communication bandwidth frequently results
in bottlenecks, especially in regard to software updates for
popular software products, such as Microsoft Corporation’s
Windows® family of operating systems and related produc-
tivity products. Such bottlenecks exist even when software

30

40

45

50

2

updates are made available on multiple download locations
distributed throughout the Internet. One reason that such
bottlenecks occur is the unstructured access model made
available by the Internet. For example, if a first user at com-
puter A requests the latest download of a software product, the
download passes through the first user’s independent service
provider (ISP). Furthermore, the request is treated as a single,
individualized access, meaning that the request is treated
independent of, and unrelated to, any other network traffic
and/or request. As such, if a second user at computer B, who
also happens to have the same ISP, requests the same down-
load as the first user, the request from the second user is also
treated as a single, individualized access. In this example, the
same download will be transmitted over the same infrastruc-
ture twice, because each request was treated in isolation.
Clearly, if the number of users increases substantially, the
finite communication bandwidth will become a bottleneck. In
this example, which is quite common, it would have been
much more efficient if the download could have been cached
at a local location, and each user request satisfied from the
local cache.

With regard to control of distribution, many organizations,
especially large organizations, have legitimate reasons to
control the distribution of updates to their computers. For
example, unfortunately some updates have or introduce
flaws, frequently referred to as bugs, that “break” features of
a software product. These broken features may be insignifi-
cant, but all too often they can disrupt a business’s mission-
critical features. As a business cannot afford to lose its mis-
sion-critical features, a responsible business will first evaluate
and test each software update within a controlled environ-
ment for some period of time prior to releasing the update to
the remainder of their computers. This evaluation period per-
mits the organization to validate whether an update will
adversely affect a mission-critical feature. Only after it has
been satisfactorily determined that an update will not bring
down any mission critical feature is the update permitted to be
distributed to the remainder of the organization’s computers.
Clearly, most organizations must exercise control over the
installation of software updates on their computers.

Another reason that a business or an organization often
needs to control distribution of software updates is to ensure
consistency among the computers in the organization. It is
very important for information service departments to have a
standardized, target platform upon which all computers oper-
ate, whether it is for a word processor or an operating system.
Without a standard, software and computer maintenance may
be unnecessarily complex and difficult.

Still another reason that local control is important is for
billing purposes. In large organizations, it is often inefficient
to individually install software on a computer, or to individu-
ally maintain licenses for a particular software product for
each computer in the organization. Instead, a single site
license permits an organization to run a software product on
numerous computers. Thus, an organization may be required
to report the number of computers running a product under
the site license, or may need to limit the number of computers
running a product under a site license. All of these reasons
often require local control over software update distribution.

In light of the various above-identified issues relating to
software update distribution, what is needed is an extensible
software update distribution architecture for providing con-
trol over the distribution of software updates, as well as
increasing their distribution efficiency. The present invention
addresses these and other issues found in the prior art.

SUMMARY OF THE INVENTION

According to aspects of the present invention, an update
service node having an application programming interface

US 8,245,218 B2

3

for administering the distribution of software updates on the
update service node, is presented. The update service node
includes an update store for storing software updates. The
update service node also includes an update web service
through which the update service node obtains software
updates from a parent update service node over a communi-
cation network, and through which the update service node
distributes software updates to child update service nodes
over the communication network. Still further, the update
service node includes an administration application program-
ming interface (API) through which an administrator estab-
lishes controls the distribution of software updates to child
update service nodes and client computers, wherein the
administration API is an object exposing a plurality of inter-
face calls through which the administrator establishes said
rules.

According to additional aspects of the present invention, an
application programming interface (API) for administering
the distribution of software updates on an update service
node, is presented. The API comprises a get configuration
interface call which returns a configuration interface object
for reading and writing software update administration con-
figuration values to the update service node. The API further
comprises a get subscription interface call which returns a
subscription interface object defined on the update service
node. The API still further comprises a get update interface
call which returns a update interface object corresponding to
an update identifier passed in the get update interface call, as
well as a get updates interface call which returns an update
collection object containing update interface objects corre-
sponding to values passed in the get updates interface call.
The API also comprises a get computer interface call which
returns an client computer object corresponding to the a client
computer associated with the update service node and that
was identified in the get computer interface call, and a get
computers interface call which returns a computer collection
object including client computer objects corresponding to
client computers associated with the update service node.
Additionally, the API comprises a get group interface call
which returns an target group object that was identified in the
get group interface call, and a get groups interface call which
returns a target group collection object including target group
objects corresponding to target groups on the update service
node.

According to still further aspects of the present invention,
a software update distribution system for distributing soft-
ware updates, is presented. The software update distribution
system comprises an update service node and an administra-
tion application programming interface (API) associated with
the update service node. The administration API is an inter-
face object exposing a plurality of interface calls for control-
ling the distribution of software updates. The administration
APl includes a get configuration interface call which returns
a configuration interface object for reading and writing soft-
ware update administration configuration values to the update
service node. The API further includes a get subscription
interface call which returns a subscription interface object
defined on the update service node. The API still further
includes a get update interface call which returns a update
interface object corresponding to an update identifier passed
in the get update interface call, as well as a get updates
interface call which returns an update collection object con-
taining update interface objects corresponding to values
passed in the get updates interface call. The API also includes
a get computer interface call which returns an client computer
object corresponding to the a client computer associated with
the update service node and that was identified in the get

10

15

20

25

30

35

40

45

50

55

60

65

4

computer interface call, and a get computers interface call
which returns a computer collection object including client
computer objects corresponding to client computers associ-
ated with the update service node. Additionally, the API
includes a get group interface call which returns an target
group object that was identified in the get group interface call,
and a get groups interface call which returns a target group
collection object including target group objects correspond-
ing to target groups on the update service node.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same become better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings, wherein:

FIG. 1 is a pictorial diagram of an exemplary update dis-
tribution system formed in accordance with aspects of the
present invention;

FIG. 2 is a block diagram illustrating exemplary logical
components of an update service node formed in accordance
with aspects of the present invention;

FIG. 3 is a block diagram illustrating exemplary logical
components of a root update service node formed in accor-
dance with aspects of the present invention;

FIG. 4 is a block diagram illustrating an exemplary
exchange between a parent update service node and a child
update service node in providing a software update from the
parent update service node to the child update service node in
accordance with aspects of the present invention;

FIG. 5 is a flow diagram illustrating an exemplary routine
executed on a child update service node to periodically obtain
updates from its parent update service node;

FIG. 6 is a flow diagram of an exemplary subroutine suit-
able for use in the exemplary routine of FIG. 5 for obtaining
an update catalog from a parent update service node;

FIG. 7 is a flow diagram of an exemplary subroutine suit-
able for use in the exemplary routine of FIG. 5 for obtaining
a software update from a parent update service node;

FIG. 8 is a flow diagram of an exemplary routine for pro-
cessing an update request from a child update service node;

FIG. 9 is a pictorial diagram for illustrating how the admin-
istration API is utilized with regard to configuring an update
service node to distribute software updates to client comput-
ers; and

FIG. 10 is a block diagram illustrating certain administra-
tion API calls for administering the distribution of software
updates on an update service node.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

According to aspects of the present invention, an update
distribution system, organized in a hierarchical fashion, for
distributing software updates is presented. FIG. 1 is a pictorial
diagram of an exemplary update distribution system 100
formed in accordance with aspects of the present invention.
According to the present invention, at the “top” of an update
distribution system, such as the illustrated update distribution
system 100, is a root update service node 102. Software
providers, such as software provider 110, distribute their soft-
ware updates through the update distribution system 100 by
submitting the updates to the root update service node 102.
According to aspects of the present invention, software pro-
viders, such as software provider 110, may submit their soft-

US 8,245,218 B2

5

ware updates to the root update service node 102 through a
network, such as the Internet 108.

A hierarchical update distribution system, such as the
exemplary update distribution system 100, will likely include
at least one other update service node in addition to the root
update service node 102. As illustrated in FIG. 1, the exem-
plary update distribution system 100 includes root update
service node 102 and two additional update service nodes:
update service node 104 and update service node 106.
According to the present invention, each hierarchical update
distribution system is organized in a tree-like structure under-
neath the root update service node 102. In other words, each
update service node in an update distribution system has zero
or more child update service nodes. Thus, while the exem-
plary update distribution system 100 shows that each parent
update service node, i.e., the root update service node 102 and
update service node 104, have only one child, it is for illus-
tration purposes only, and should not be construed as limiting
upon the present invention. Furthermore, with the exception
of'the root update service node 102, each update service node
in an update distribution system has one parent update service
node. Accordingly, as shown in FIG. 1, update service node
104 is a child node to the root update service node 102, and
update service node 106 is a child node to update service node
104. As can be seen, each update service node, with the
exception of the root update service node 102, can be both a
child update service node and a parent update service node.

As illustrated in the exemplary update distribution system
100, the root update service node 102 communicates with
update service node 104 through the Internet 108. However, it
should be understood that this is illustrative only, and should
not be construed as limiting upon the present invention. Each
update service node in an update distribution system need
only be able to communicate with its parent and/or children
through some communication network. Thus, while update
service node 104 communicates with its parent, root update
service node 102, through the Internet 108, it may alterna-
tively communicate with its child update service nodes, such
as update service node 106, via a local area network 124.

Also shown in FIG. 1, update service node 106 resides
within a sub-network 126 of the local area network 124. As an
example, local area network 124 may correspond to an orga-
nization’s general corporate network, and update service
node 104 represents the corporation’s link to the update dis-
tribution system 100, via its connection to its parent, root
update service node 102. Further, sub-network 126 may cor-
respond to an identifiable group of computers within the
corporate network, such as a test/evaluation group, aremotely
located office, or a mission critical group. As will be
described in greater detail below, according to aspects of the
present invention, an administrator on update service node
104 is able to control the distribution of updates to update
service node 106, and ultimately to client computers.

It should be appreciated that each update service node,
including both the root update service node 102 and update
service nodes 104 and 106, is configured to distribute soft-
ware updates to both child update service nodes as well as
client computers. As shown in FIG. 1, the exemplary update
distribution system 100 includes client computers 112-122.
Each update service node, including the root update service
node 102, distributes updates to child update service nodes
and client computers according to local configuration infor-
mation. According to one embodiment, an administrator
defines groups and associates update distribution rules with
those groups. Each update service node has at least one dis-
tribution group.

10

15

20

25

30

35

40

45

50

55

60

65

6

As an example to illustrate how the update distribution
system operates, assume that local area network 124 corre-
sponds to a business organization’s corporate network.
According to one embodiment of the present invention, an
administrator, on update service node 104, may define mul-
tiple distribution groups for the corporate network 124,
including an evaluation group, corresponding to the sub-
network 126 including update service node 106 and client
computers 120 and 122, for evaluating the suitability of an
update for the general corporate network 124, as well as a
general corporate group including the update service node
104 and client computers 114-118.

With regard to the evaluation group, the administrator
includes the update service node 106 as a member, and asso-
ciates rules with that group such that updates are immediately
distributed to the evaluation group’s members as they become
available. Alternatively, with regard to the general corporate
group, the administrator adds client computers 114-118, and
associates a rule such that updates are only distributed to the
general corporate group members if specifically authorized
by the administrator. Assume also that an administrator for
child update service node 106 creates a default group consist-
ing of the client computers 120 and 122 in the evaluation
sub-network 126, to which any new software update may be
immediately distributed.

Continuing the above example, a software provider 110
submits a software update to the root update service node 102.
According to rules established at the root update service node
102, the update is eventually distributed to the corporate
update service node 104. Upon receiving the update, per the
rules established by the administrator, the corporate update
service node 104 distributes the update to the members of the
evaluation group (defined as only the child update service
node 106), but withholds the update from the general corpo-
rate group pending specific authorization to distribute the
update to that group.

Continuing the above example, upon receiving the update,
the evaluation update service node 106 processes the update
with respect to each defined group. In this example, the evalu-
ation update service node 106 has only one group. However,
as previously mentioned, in an actual implementation, there
may be multiple groups defined, each with a unique set of
associated distribution rules. For this example, the evaluation
update service node 106 immediately makes the update avail-
able for distribution to client computers 120 and 122. Client
computers 120 and 122 may now be updated and the evalua-
tion period/process may begin.

Still continuing the above example, when the administrator
on the corporate update service node 104 is sufficiently sat-
isfied that the update is suitable for distribution over the entire
corporate network 124, the administrator then explicitly
authorizes the update to be distributed to the members of the
general corporate group. The corporate update service node
104 correspondingly makes the update available to client
computers 114-118. It should be understood that the evalua-
tion update service node 106 may also be included in the
general corporate group. However, because the evaluation
update service node 106 has already been updated, no addi-
tional update-related action is needed for distributing the
update to the evaluation sub-network 126.

As can be seen by the above example, the present invention
offers significant benefits in terms of local distribution control
and download efficiency. In addition to the above-described
aspects of local distribution control, significant savings in
communication bandwidth are also realized. For example,
while the exemplary corporate network 124 illustrated in
FIG. 1 includes five client computers, the software provider’s

US 8,245,218 B2

7

update was downloaded from the root update service node
102 to the corporate update service node 104 only one time.
Clearly then, as the number of client computers serviced by
an update service node increases, the communication band-
width usage between a parent update service node and a client
update service node remains constant, thereby substantially
reducing the amount of communication bandwidth that
would otherwise be used. Additionally, the update distribu-
tion system is both extensible and scalable. The update dis-
tribution system is extensible in at least two ways: any num-
ber of child update service nodes may be added to a parent
update service node, and child update service nodes may also
be a parent update service node. Each sub-tree of the update
distribution system may therefore be tailored to meet indi-
vidual needs.

FIG. 2 is a block diagram illustrating exemplary logical
components of an update service node 200, such as the cor-
porate update service node 104 (FIG. 1) or the evaluation
update service node 106 (FIG. 1), formed in accordance with
aspects of the present invention. As shown in FIG. 2, an
update service node 200 includes an update web service 202,
a client update module 204, a child update module 206, and a
reporting module 208. The exemplary update service node
200 also includes an authentication/authorization module
210, an administration application programming interface
(API) 212, an update content store 214, an administration
user interface 218, and an update information store 216.

The update web service 202 provides a common set of Web
services through which client computers, child update service
nodes, and a parent update service node can communicate
with an update service node. For example, with reference to
FIG. 1, in order for the child/evaluation update service node
106 to obtain a software update from the parent/corporate
update service node 104, the client communicates through the
parent’s update web service 202. Similarly, when a parent
update service node, such as root update service node 102, has
information, including updates, to communicate to its child
update service node 104, the parent update service node com-
municates through the child’s update web service 202.

In an actual embodiment of the present invention, the com-
mon set of Web services provided by the update web service
202, generally referred to as the web services interface,
includes the following calls: GetServerAuthConfig for
obtaining authentication configuration information from a
parent update service node; GetConfigData and GetServer-
ConfigData for obtaining parent update server node configu-
ration information and properties; GetServerCookie for
obtaining an authorization token from a parent update service
node; GetRevisionldList for obtaining an update list from a
parent update service node; GetUpdateData for obtaining
update metadata and update payloads from a parent update
service node; and ReportEvents for reporting the update
activity that occurred on an update service node to its parent
update service node.

The client update module 204 handles communications
between a client computer and the update service node 200 in
regard to updates and update information stored on the update
service node. The update-related communications include,
but are not limited to, distributing updates in response to
client requests and providing a list of available software prod-
ucts and associated updates for the client computer. The client
update module 204 is also responsible for determining
whether a client computer is authorized to obtain a particular
update according to associated distribution rules, and
responds to a client computer with the update-related infor-
mation that the client computer is authorized to access.

10

15

20

25

30

35

40

45

50

55

60

65

8

The child update module 206 handles update-related com-
munications between a parent update service node and its
child update service nodes. The update-related communica-
tions include, but are not limited to, identifying lists of soft-
ware products and associated updates available to a child
update service node, as well as responding to update requests
from a child update service node. The downstream update
module 206 is responsible for determining whether a child
update service node is authorized to obtain a particular update
according to associated distribution rules, and responds to a
child update service node with the update-related information
that the child update service node is authorized to access.

The reporting module 208 generates update-related
reports, such as which groups have or have not received a
particular update, which client computers have or have not
downloaded/installed an update, what updates are available
on the update service node, and the like. These reports may be
used internally, such as by an administrator, and also submit-
ted to the parent update service node, via the parent’s update
service interface 202. As described above, it is often neces-
sary for corporations to determine which client computers
have a particular update installed, such as for billing purposes
or for maintenance purposes. Information/reports generated
by the reporting module 208 may be the basis of these reports.

The authentication/authorization module 210 is respon-
sible for authenticating, i.e., determining the identity of| a
particular client computer or child update service node, and
determining whether a client computer or child update ser-
vice node is authorized to access available updates at the
update service node 200. To those client computers and child
update service nodes that are authenticated and authorized to
access updates on an update service node, the authentication/
authorization module 210 issues an authorization token that
must be used in conjunction with obtaining updates. The
issuance and use of an authorization token is described in
greater detail below in regard to FIGS. 4A and 4B.

The administration API 212 represents the application
interface through which control of the update service node
200 is exercised, and through which updates ultimately are
stored and distributed. When the update web service 202
receives various update-related requests from client comput-
ers and child update service nodes, these requests are ulti-
mately broken into calls into the administration API 212,
either directly or indirectly through the client update module
204 and the child update module 206. In conjunction with the
administration user interface 218 or some other program
installed on the update service node 200 suitably configured
to use the administration API1 212, an administrator ultimately
controls all aspects of the update process for that update
service node, as well as any child update service nodes and
client computers. An actual embodiment of an administration
API is described in greater detail below in regard to FIG. 9.

Through the administration user interface 218, administra-
tors may configure and maintain an update service node 200,
via the administration API 212. Thus, through the adminis-
tration user interface 218, an administrator creates, modifies,
and deletes groups, as well as associating rules for each
group. Furthermore, using the administration user interface
218, an administrator establishes to which group a client
computer or child update service node belongs. Through the
administration user interface 218, an administrator may also
explicitly authorize the distribution of updates to client com-
puters or child update service nodes, configure the update
service node 200 to periodically query its parent update ser-
vice node for new updates, configure reporting parameters
and view internal reports, and the like. As mentioned above,
while the administration user interface 218 permits an admin-

US 8,245,218 B2

9

istrator to exercise control over aspects of the update service
node 200, another application residing on the update service
node 200, suitably adapted to operate with the administration
API 212, may be used instead of the administration user
interface 218.

As mentioned above, according to one embodiment of the
present invention, an update service node 200 includes both
an update content store 214 and an update information store
216. The update content store 214 stores the actual files rep-
resenting the software updates, such as binaries and patch
files. In contrast, the update information store 216 stores
information and metadata corresponding to the updates avail-
able on the update service node 200, including the update files
stored in the update content store 214. According to one
embodiment, the update content store 214 and the update
information store 216 are both relational databases. While the
exemplary update service node 200 is shown as having two
data stores, the present invention should not be so limited. In
an alternative embodiment, both the update content store 214
and the update information store 216 may be combined in a
single information store.

In accordance with aspects of the present invention, a soft-
ware update may be presented as being “available” on an
update service node 200 to client computers and child update
service nodes even though the update is not stored physically
in the update content store 214. More particularly, rather than
immediately downloading and storing the actual update files
on an update service node 200, a link referencing the update
files on the parent update service node or elsewhere, may
instead be stored on the update service node. Thus, if a client
computer requests the update, or a child update service node
requests the actual update, the update is then brought down
from the parent update service node and stored in the update
content store 214, in preparation for delivering it to the client
computer or child update service node. Those skilled in the art
will recognize this type of update access is referred to as
just-in-time downloading. In this manner, an “available”
update, need not be distributed over the various network
channels until it is actually requested. According to aspects of
the present invention, an administrator of an update service
node 200 may selectively determine whether to obtain soft-
ware updates in a just-in-time manner.

While the above description of FIG. 2 illustrates various
components of an exemplary update service module 200, it
should be appreciated that other components of an update
service module may also exist. Furthermore, the above
described components should be understood to be logical
components, not necessarily actual components. In an actual
implementation, the above identified components may be
combined together and/or with other components according
to implementation determinations. Additionally, it should be
appreciated that while an update service node 200 may be
viewed as a server computer on a network, in an actual imple-
mentation, an update service node may be implemented on
any number of types of computing devices. For example, each
update service node 200 may be implemented and/or installed
on a single stand-alone computer system or, alternatively, on
a distributed computing system comprising multiple comput-
ing devices.

FIG. 3 is a block diagram illustrating exemplary logical
components of a root update service node 300, such as the
root update service node 102 illustrated in FIG. 1, formed in
accordance with aspects of the present invention. Similar to
the logical components of an update service node 200 (FIG.
2), a root update service node 300 includes an update web
service 202, a child update module 206, and an authentica-
tion/authorization module 210. Additionally, an exemplary

20

40

45

55

10

root update service node 300 also includes an administration
API 212, an update content store 214, and an update infor-
mation store 216. Optionally, the root update service node
300 may also include a client update module 204, a reporting
module 208, and an administration user interface 218.

The client update module 204 is an optional component for
aroot update service node 300 depending on whether the root
update service node provides software updates directly to
client computers. For example, with reference to FIG. 1, root
update service node 102 would include the optional client
update module 204 as the root update service node that
directly services client computer 112. However, if a root
update service node 300 were not to directly service client
computers, the client update module 204 could be omitted.

The reporting module 208 is optional for a root update
service node 300 because a root update service node has no
parent update service node to whom update reports are pro-
vided. However, to the extent that update reports are desirable
to the root update service node’s administrator, the reporting
module 208 may be optionally included.

In addition to comprising the logical components included
in anupdate service node 200 (FIG. 2), the root update service
node 300 also includes a software provider interface 302. The
software provider interface 302 provides the communication
interface by which a software provider 110 (FIG. 1) submits
software updates directly to the root update service node 300,
and indirectly to the exemplary update distribution system
100.

Similar to the update service node 200 of FIG. 2, the above
description of FIG. 3 illustrates various components of an
exemplary root update service module 300. However, it
should be appreciated that other components of a root update
service module may also exist. Furthermore, the above
described components should be understood to be logical
components, not necessarily actual components. In an actual
implementation, the above identified components may be
combined together and/or with other components according
to implementation determinations. Additionally, it should be
appreciated that while a root update service node 200 may be
viewed as a server computer on a network, in an actual imple-
mentation, an update service node may be implemented on
any number of computing devices. For example, the root
update service node 300 may be implemented and/or installed
on a single stand-alone computer system or, alternatively, on
a distributed computing system comprising multiple comput-
ing devices.

In order to better understand how an update is distributed
from the root update service node throughout an update dis-
tribution system 100, an illustration of an exemplary
exchange between a parent update service node and a child
update service node is warranted. FIG. 4 is a block diagram
illustrating an exemplary exchange 400 between a parent
update service node 402 and a child update service node 404
in propagating a software update from the parent update
service node to the child update service node, in accordance
with aspects of the present invention. As can be seen, the
exemplary diagram 400 is divided in half, the left half of
which corresponds to actions and events of the parent update
service node 402, and the right half corresponding to actions
and events of the child update service node 404.

For purposes of discussion with regard to FIG. 4, it should
be further understood that the parent update service node 402
may or may not be the root update service node in the update
distribution system 100. Additionally, for purposes of this
discussion, it is assumed that the parent update service node
402 has been configured by an administrator such that the

