
AT877-0101 JWH POl 71-340 

=== ====:::. =® 
~- -.r~ Technical Disclosure Bulletin Vol. 23 No. 2 July 1980 

DIGRAMATIC TEXT COMPRESSION 

D. A. Hamilton, P. R. Herrold and M. J. Ossefort 

Text is normally represented by 8-bit characters. When storage reduc­
tion is required, the character set might be limited to just the 26 
letters. Then, using 5 bits/character, the 32 states provided are more 
than enough for the 26 characters. 

But the amount of information (measured in bits) that is conveyed 
by a character is inversely proportional to its probability, rather than 
just the number of other characters in the alphabet. The number of bits 
neede~d to represent a given character is - log2 (p), where p is the 
probability of occurrence of the character. For example, a character 
which occurs half the time would require exactly one bit; if it occurred 
one-fourth of the time, it would need two bits. The number of bits 
required to represent a character "on the average" is calculated as the 
sum of the products of the individual character probabilities and the 
numbe~r of bits required for the given character. (That is, it is a 
"weighted" average.) 

Thus, when still more reduction is needed, Huffman encoding is 
popularly used. Huffman encoding is a method of assigning variable­
length bit strings to represent the characters in an alphabet such that 
frequent characters receive short representations while infrequent 
characters are assigned longer representations. Calculations were done 
on a list of the 10,000 most frequent words from Time magazine as a 
possJlble source for a dictionary. (For this experiment, each word 
occurred exactly once in the list.) Assuming even probabilities of the 
26 lE~tters, 4. 7 bits are required per character. Noting the relative 
frequencies, the average information per character drops to only 4.2 
bits.. (Naturally, there are no such things in real computers as frac­
tional bits, but the nature of Huffman encoding is that some characters 
receive encodings that are a little better than needed and others re­
ceive encodings that are a little long; our experiments show the overall 
inefficiency as being less than 1%.) 

Still, there is residual redundancy. This is due to the fact that 
not all character combinations occur in proportion to the individual 
character frequencies. For example, "Q" is very infrequent, but, given 
that it occurs at all, it is almost certain to be followed by "U". On 
the other hand, "J" and "C" are both relatively frequent individually, 
but in our language, there are no words whatsoever in which an initial 
"J" :is followed by "C". Intuitively, it should be possible to invent a 
new alphabet, some characters of which would represent a combination of 
several of our old characters. 

© IBM Corp. 1980 448 



449 

DIGRAMATIC TEXT COMPRESSION Continued 

This problem has been looked at in the past, but solutions have 
been attempted by exhaustive examinations of all 

26 letters, 
676 digrams (two-character combinations), 
17,576 trigrams, 
456,976 quadrigrams, etc. 

Generally, an attempt is made to choose the most frequent combina­
tions from each class and to then fine tune the selections by trial a.nd 
error. However, there are two serious errors in this approach: 

1) The computer searches are enormous and will still not 
necessarily produce the best symbol set (since the 
longest symbol is no longer than 4 characters - that 
being the longest sequence for which frequency tabula­
tions are generally attempted). 

2) It is incorrect to assume that because a combination is 
frequent, it will be a good symbol choice. 

It is not the absolute frequency of a letter combination which makes it 
significant - it is its departure from expected frequency which is 
important. This departure is really a way of noting that English spell­
ing is a Markov process - the probability that the next character will 
be a "P", for example, depends on what the last character was. 

It is possible to calculate the effect of adding a particular 
digram symbol to the English alphabet. (Ignore, as minor, the effects 
of the final Huffman coding inefficiency.) 

Let 

T 

c. 
1. 

c. 
J 

ci . ,] 

Bi . ,J 

total number of characters needed to encode a 
message with the latest alphabet. 

number of occurrences of character i. 

number of occurrences of character j. 

= number of occurrences of character i followed 
by character j. 

bits to be saved by encoding a digram of 
character i followed by character j. 

= (bits used with latest alphabet) 
- (bits used with new digram added) 

Momentarily ignoring the effect of the new digram on the other 

Vol. 23 No. 2 July 1980 IBM Technical Disclosure Bulletin 



DIGRAMATIC TEXT COMPRESSION Continued 

(non-participating) characters, 

There is also a savings on the non-participating characters; their 
frequencies increase slightly since fewer characters are used overall, 
and thus this must be accounted for. For each non-participating charactE~r, 
savings to be gained may be calculated. 

Let 

ck = number of occurrences of non-participating 
character k. 

B = coding improvement over all the occurrences of k character k due to the digram. 

c I c I ) - cklog2( k T) + cklog2( k (T - ci,j) 
c T 

= cklog2( k lck(T- ci j)) 
T ' 

= cklog2( I (T- ci,j)) 

Summing over all "k" characters not participating, the total savings on 
non-participating characters can be found. 

Let 

Ni . ,J 
= Total savings on all non-participating characters 

due to digram of characters i and j. 

(T- 2ci,j)log2(TI (T- ci,j)) 

The total savings due to the addition of the digram symbol to the alpha­
bet is the sum of these components: 

B = total savings = Bi,j + Ni,j 

There is one final complication. If characters i and j are the 
same, then the formula for Bi 1 must be altered so as to avoid "charging 
double" for encoding a single'tharacter. In this special case only, 

Vol. 23 No. 2 July 1980 IBM Technical Disclosure Bulletin 450 



451 

DIGRAMATIC TEXT COMPRESSION Continued 

= -

(c - c ) ) 
+ (Ci - ci,i)log2( i i,i I (T - ci,i) 

To build up a new alphabet, new digram symbols are added one at a 
time. After each new symbol is added, all possible digrams are re­
examined to find the next reduction. Each new digram reduction may be 
viewed as another stage in the compression machine. Some symbols may be 
used only in intermediate stages and may never be present at the final 
output due to later digram consolidation with other symbols, but th:f.s is 
immaterial. 

Using these formulas, the best choice as the next character to be 
added to a symbol set in order to reduce redundancy can easily be fctUnd 
(on the computer). This was done in a PL/I Optimizer program running on 
the same list of the 10,000 most frequent words in Time. The results 
were interesting in that some very long strings were reduced to single 
symbols. For example, the 42nd symbol was "ATION", the 54th was "IGHT", 
the 105th was "COUNT", the 229th was "VOLUTION", etc. By running the 
program until an alphabet of 255 symbols had been created, the numbe~r of 
bits per character (referring to the "original" characters) had been 
reduced to only 3.77. Recounting our results, we find: 

4.7 bits/character before any redundancy eliminated, 

4.2 bits/character after accounting for relative character frequencies, 
and 

3.77 bits/character after digram compression. 

To use digram compression, one must have a method which insures: 
that 

1) the resulting "spelling" will be unique for a given message, 
and 

2) the translation will be fast. 

The first requirement is imposed by the fact that if, for example, 
the word "going" were to be compressed using an "alphabet" containing 
"oi", "ng" and "ing" characters, one would not (without some rules) know 
whether to encode 

going = g + oi + ng 

or 

going = g + o + ing. 

Vol. 23 No. 2 July 1980 IBM Technical Disclosure Bulletin 



DIGF~TIC TEXT COMPRESSION Continued 

Any encoding must be done in the same way that characters were added to 
the alphabet. In our example, if the order in which the digrams were 
adde!d was "ng", "oi", "ing", the first spelling would be correct; if the 
orde!r were "ng", "ing", "oi", the second would be used. 

The encoding is done by viewing the digram symbols as numbered 
compression rules, each rule specifying that at a given "step", a cer­
tain character pair may be replaced by a digram symbol. Particular 
rulE!S may or may not apply to a given message (for example, a rule 
joining "N" and "G" does not apply if there is no "NG" pair); any rules 
that apply must be used in the order specified by their numbers. 

The procedure for encoding a message is to mark each character pair 
with a rule number and the resulting symbol, if a rule exists for merging 
the two characters. The rule with the lowest number is performed. The 
compression possibilities are unchanged for all characters except the 
new digram symbol and the character which precedes it, and the digram 
and its following character. Lookups are done to find compression rules 
for these two character pairs only, and the process is repeated until no 
more! compressions can be done. The symbols are then encoded into the 
varying length bit strings using Huffman coding for the compression 
alphabet. 

Vol. 23 No. 2 July 1980 IBM Technical Disclosure Bulletin 452 




